Notiz / **Note**

1547

anti-Michael Addition of Cyanocuprate tBuCu(CN)Li to Acceptor-Substituted Enynes

Andreas Gerold and Norbert Krause*

Institut fur Organische Chemie der Technischen Hochschule Darmstadt. Petersenstrafie 22, D-64287 Darmstadt, F.R.G.

Received March **30,** 1994

Key Words: Cuprates, organo- *I* Enynes, acceptor-substituted *I* Addition, regioselectivity of *I* anti-Michael addition *^I* Protonation, regioselectivity of

Acceptor-substituted enynes **1** react with lithium tert-butylcyanocuprate [tBuCu(CN)Li] in THF to afford anti-Michael adducts **3.** The formation of the isomeric side products **4** can be suppressed by regioselective protonation of the organo-

The formation of products with a formal anti-Michael regioselectivity in addition reactions of nucleophiles with Michael acceptors has been observed very rarely, e.g. in reactions of tert-butylmagnesium chloride with cinnamates^[1] and of organolithium compounds (in particular tBuLi) with acrylic esters, acrylic amides, and acetylenic amides^[2]. This unusual regioselectivity was attributed to the addition of free tert-butyl radicals (formed by single-electron transfer) to the Michael acceptors. In contrast to this, anti-Michael additions of organocuprates have not been reported so far, although they represent the most important reagents in conjugate addition reactions[3]. In this paper we describe our results on *anti-*Michael additions of lithium tert-butylcyanocuprate [tBuCu-(CN)Li] to acceptor-substituted enynes.

The 1,6-addition reaction of organocuprates with 2-en-4-ynoates usually readily provides β -allenic esters of type $2^{[4]}$ as the only products^[5], in particular if lithium di-tert-butylcyanocuprate $[tBu₂Cu (CN)L_2$ is used^[6]. In a few cases, however, we noticed the formation of side products **3-5** in these reactions, i.e. anti-Michael **(3, 4)** and 1,4-addition products **(5).** Careful reexamination of these transformations revealed that small deviations from the 2: 1 stoichiometry of tBuLi and CuCN necessary to obtain $tBu_2Cu(CN)Li_2$ led to the inadvertent formation of products **3-5.** In order to gain a better understanding of this result, we treated enynoate **la** with reagents formed from different ratios of tBuLi and CuCN (Table 1).

Table 1. Composition of product mixtures (%) obtained from the reaction of enynoate **1a** with cyanocuprates $tBu_nCu(CN)Li_n$

n	Solvent	1a	2а	$3a^{[a]}$	4а	5а
1.1	THF	2		33/34	24	
1.6	THF		44	17/23		
1.9	THF	0	79	6/7		
2.0	THF	O	100	O	0	
2,4	THF		92	O		8
1.1	Et ₂ O	14	4	14/40	12	16
1.1	t BuOMe	22	19	5/15		35

fa] Two diastereomers.

Chern. Be% **1994,127,** 1547- 1549 *0* VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994 0009-2940/94/0808- 1547 \$10.00+.25/0

 $R = t-Bu, Z = CO_2Et$
 $R = Ph, Z = CO_2Et$
 $R = t-Bu, Z = CN$
 $\frac{Z}{2. H^+}$

1 **la:** $R = t$ -Bu, $Z = CO₂Et$ **1b:** $R = Ph$, $Z = CO₂Et$ **Ic:** R = t-Bu, *Z* = CN 2.H' *t* \Box **R1 R1 R1** t-Bu

metallic intermediates with ethanol at -80° C. Evidence for radical intermediates or electron-transfer steps in these reac-

tions could not be obtained.

As described earlier^[6], 1,6-adduct $2a$ is the only product if the reaction is carried out with a 2:1 stoichiometry of tBuLi and CuCN, regardless whether diethyl ether^[6] or THF is used as solvent. Strikingly, the formation of side products already starts if the reaction is carried out with a ratio of $tBuLi:CuCN = 1.9:1$ in THF; even with this small deviation from the ideal stoichiometry of tBu2Cu(CN)Li2, compounds **3-5** represent 21% of the crude product mixture. With decreasing amounts of tBuLi, the portion of allenes **3** and alkynes **4/5** increases further. Use of a 1.1 : **1** ratio of tBuLi:CuCN, i.e. nearly the composition of lithium tert-butylcyanocuprate [tBuCu(CN)Li], in THF gives the anti-Michael adducts **3a** and **4a** as main products, accompanied by small amounts of starting material **(la)** and 1,4-adduct **5a;** under these conditions, 1,6-addition product **2a** is not formed any more! The reactivity of tBuCu(CN)Li towards enynonate **la** is affected only slightly by the solvent; in diethyl ether or tert-butyl methyl ether, the anti-Michael adducts are still the major products, although the reaction is not as selective as in THE In contrast to this, with ratios of tBuLi:Cu-CN > 2:l in THF, the 1,6-adduct **2a** is the major product, and the only side product observed is 1,4-adduct **Sa,** probably formed by addition of free tBuLi to enynoate **la** (only two equivalents of tBuLi can be bound in the cuprate cluster by one equivalent of $CuCN^[3]$.

Thus, it seems possible to control the course of the reaction of acceptor-substituted enynes with *tert*-butylcuprates by the stoichiometry of the reagent: treatment with $tBu_2Cu(CN)Li_2$ furnishes the 1,6-addition product **2** exclusively, whereas with tBuCu(CN)Li *anti-*Michael adducts **3** and **4** are mainly formed. The latter products are probably obtained from the same organometallic intermediate by protonation at C-3 (to give alkyne **4)** or at C-5 (to give allenes **3);** a similar scheme was already observed in conjugate reduction reactions of enynoates^[7]. Therefore, in analogy to our earlier results on regioselective protonations of allenyl enolates^[5a,b], it could be possible to influence the ratio of **3:4** by variation of the proton source. Indeed, the ratio of **3a:4a** = 2.8:l obtained by protonation with water at 0°C could be improved to 11:1 upon protonation with ethanol at -80° C. However, the stereoselectivity of the formation of the two diastereomers of allene **3a** depends only slightly on the proton source (water, 0° C: ds = 1:1; ethanol, -80° C: ds = 7:3).

On a preparative scale, allenes **3a** were obtained in 70% yield by treatment of enynoate **1 a** with tBuCu(CN)Li and low-temperature protonation with ethanol. Likewise, the phenyl-substituted substrate **1b** gave allenes **3b** (77% yield, $ds = 1:1$). Interestingly, this method could also be applied to enynenitrile **lc,** a Michael acceptor that does not undergo 1,6-addition reactions with tBu_2Cu - $(CN)Li₂^[5a,8]$. Reaction with tBuCu(CN)Li and protonation with ethanol provided allenic nitriles **3c** (ds = 78:22) in 48% yield. In contrast to these acceptor-substituted enynes, methyl cinnamate reacts very sluggishly with tBuCu(CN)Li to give a mixture of the Michael and anti-Michael adducts.

From the mechanistic point of view, it is crucial to note that the formation of anti-Michael products is specific to the tert-butylcyanocuprate t BuCu(CN)Li; the corresponding methyl- and n -butyl-substituted cuprates with a 1 : **1** stoichiometry of RLi and CuCN do not react with enynoate **la.** In order to establish whether the reactions of tBuCu(CN)Li take place via radical intermediates, as has been suggested for anti-Michael additions of Grignard^[1] and organolithium reagents^[2], the radical trap 2,2,6,6-tetramethylpiperidin-I-yloxy (TMPO) was added to the reaction mixture. The only trapping product isolated in this reaction was the N -tert-butoxypiperidine derivative; since this is also formed from tert-butylcuprates and TMPO in the absence of a substrate^[9], the observation of this product is not indicative of a radical mechanism. Likewise, the addition of nitrobenzene which is known to suppress electron-transfer processes^[10] did not affect the formation of *anti*-Michael products in the reaction of enynoate **la** with tBuCu(CN)Li. Finally, an interesting behavior was encountered when the reaction of **la** with tBu-Cu(CN)Li in THF was quenched with D_2O : The amount of deuterium incorporated into the product depends on the reaction temperature. When the reaction was carried out at -80° C and the reaction mixture hydrolyzed at this temperature with D₂O, the *anti*-Michael product **3a** contained ca. 80% deuterium; if the mixture was warmed up to -30° C before quenching, the incorporation of deuterium decreased to ca. 50%. Obviously, an organolithium intermediate is formed in the anti-Michael addition which at elevated temperatures is protonated by the solvent THE

To summarize, it has been shown that anti-Michael adducts **3** can be obtained by reaction of acceptor-substituted enynes **1** with

lithium tert-butylcyanocuprate tBuCu(CN)Li. The formation of the isomeric side products **4** can be suppressed by regioselective protonation of the organometallic intermediates with ethanol at - 80°C. Evidence for radical intermediates or electron-transfer steps in these reactions could not be obtained.

Generous support of this work by the Deutsche Forschungsgemeinschuft, the Volkswagen-Stiftung, and the *Fonds der* Chemischen Industrie is gratefully acknowledged.

Experimental

General Information: See ref.^[5a].

Reaction of Ethyl *6,6-Dimethyl-2-hepten-4-ynoate* **(la)** with Cyanocuprates tBu_nCu(CN)Li_n: To a suspension of 90 mg (1.0) mmol) of CuCN in 2 ml of the solvent (THF, Et_2O , or $MeOtBu$) was added dropwise at -30° C *n* mmol of *t*BuLi (1.7 *M* solution in pentane). The mixture was stirred for 15 min at -30° C, cooled to -8O"C, and treated with 162 mg (0.9 nimol) of **la["]** in 0.5 ml of the solvent. After stirring for 30 min at -80° C, the mixture was warmed to O'C, and *2* ml of water was added. The copper salts were removed by filtration through Celite, and the composition of the crude product was examined by GC (OV-1701, H_2). Elution order: **la, 5a, 3a** (diastereomer l), **4a, 3a** (diastereomer 2), **2a.** Allenes 2a^[6] and 3a (see below) were identified by their NMR spectra. The 1,4-adduct **5a** was prepared independently by reaction of 1a with tBuLi and tBuCu/Me₃SiI^[12], respectively.

Ethyl *6,6-Dimethyl-2-(1,1-dimethylethyhyl)-I-heptynoate* **(4a):** IH NMR: δ = 0.88 [s, 9H, C(CH₃)₃], 1.08 [s, 9H, C(CH₃)₃], 1.22 (t, *J=* 7.1 Hz, 3H, CH3), 2.20 (dd, *J=* 2.5/14.2 Hz, lH, 3-H), 2.31 (dd, *J=* 2.5/11.4 Hz, 1H, 2-H), 2.42 (dd, *J=* 11.4114.2 Hz, lH, 3-H), 4.05 (q, *J=* 7.1 Hz, 2H, CH2).

Ethyl *6,6-Dimethyl-3-(I,I-dimethylethyl)-I-heptynoate* **(5a):** 'H NMR: $\delta = 1.15$ [s, 9H, C(CH₃)₃], 1.26 [s, 9H, C(CH₃)₃], 1.28 (t, *J=* 7.1 Hz, 3H, CH3), 2.26 (dd, *J=* 10.9/14.2 Hz, lH, 2-H), 2.48 (dd, *J=* 4.5/14.2 Hz, lH, 2-H), 2.55 (dd, *J=* 4.5/10.9 Hz, lH, **3-** H), 4.19 **(q,** $J = 7.1$ **Hz, 2H, CH₂)**.

Ethyl *6.6-Dimethyl-2-(I,I-dimethylethyl)-3,4-heptadienoate* **(3a):** To a suspension of 180 mg (2.0 mmol) of CuCN in 4 ml of THF was added dropwise at -30° C 1.2 ml (2.0 mmol) of tBuLi (1.7 M solution in pentane). After stirring for 15 min at -30° C, the mixture was cooled to -80° C and a solution of 180 mg (1.0 mmol) of **la["]** in 1 ml of THF was added. The mixture was warmed to -40° C during 1 h and then cooled back to -80° C; the reaction was quenched by addition of 5 ml of a cold $(-80^{\circ}C)$ 2 M solution of ethanol in diethyl ether. The mixture was warmed to room temperature, then 5 ml of water was added, and the copper salts were removed by filtration through Celite. The filtrate was concentrated in vacuo, and the crude product was purified by column chromatography [SiO₂; diethyl ether/hexane (1:20)], giving 165 mg (70%) of $3a$ (70:30 mixture of diastereomers) as a colorless liquid. $- IR$: $\tilde{v} = 1970 \text{ cm}^{-1}$ (C=C=C), 1740 **(s, C=O).** - ¹H NMR: Major diastereomer: 6 = 1.01 **[s,** 9H, C(CH3)3], 1.04 [s, 9H, C(CH3),], H), 4.13/4.14 (2 q, $2 \times J = 7.1$ Hz, 2H, CH₂), 5.15 (dd, $J = 0.8/$ 6.2 Hz, 1 H, 5-H), 5.30 (dd, *J* = 6.2/10.0 Hz, 1 H, 3-H); minor diastereomer: $\delta = 0.99$ [s, 9H, C(CH₃)₃], 1.02 [s, 9H, C(CH₃)₃], 1.26 4.15 (2 q, 2 \times *J* = 7.2 Hz, 2H, CH₂), 5.14 (dd, *J* = 1.2/6.2 Hz, 1H, 5-H), 5.25 (dd, $J = 6.2/9.6$ Hz, 1H, 3-H). - ¹³C NMR: Major diastereomer: $\delta = 14.1$ (+, CH₃), 27.8 [+, C(CH₃)₃], 30.3 [+, 1.26 (t, *J=* 7.1 Hz, 3H, CH3), 2.78 (dd, *J=* 0.8/10.0 Hz, IH, 2- $(t, J = 7.2 \text{ Hz}, 3\text{ H}, \text{ CH}_3), 2.77 \text{ (dd, } J = 1.2/9.6 \text{ Hz}, 1\text{ H}, 2\text{-H}), 4.14/$ $C(CH₃)₃$], 31.8 [\times , $C(CH₃)₃$], 33.7 [\times , $C(CH₃)₃$], 57.4 (+, C-2), 60.1 (-, CHZ), 89.2 (+, C-3), 103.4 (+, *C-5),* 173.2 (X, C-l), 202.0 (X, C-4); minor diastereomer: $\delta = 14.3$ (+, CH₃), 27.5 [+, C(CH₃)₃], 30.1 [+, *C(CH3)3],* 31.6 [X, C(CH3)3], 34.0 [X, C(CH3)3], 57.4 (+, C-2), 60.0 (-, CH₂), 89.3 (+, C-3), 103.2 (+, C-5), 173.2 (×, C-1), 202.4 (\times , C-4). - MS: m/z ($\%$) = 238 (1) [M⁺], 181 (100). -C15H3002 (238.4): calcd. C 75.58, H 10.99; found C 75.71, H 11.12.

Ethyl 5-Phenyl-2- *(l11-dimethylethyl)-3,4-pentadienoate* **(3b):** Prepared from 180 mg (2.0 mmol) of CuCN in 4 ml of THF, 1.2 ml (2.0 mmol) of t BuLi, and 200 mg (1.0 mmol) of $1b^{[5a]}$ in 1 ml of THF as described for **3a.** Yield: 198 mg (77%) of **3b** (1 : **1** mixture of diastereomers) as a colorless oil. - IR: $\tilde{v} = 1960$ cm⁻¹ (C=C=C), 1735 (s, C=O). - ¹H NMR: Diastereomer 1: $\delta = 1.06$ **[s,** 9H, C(CH,)3], 1.25 (t, *J=* 7.1 **Hz,** 3H, CH3), 2.94 (dd, *J=* 0.8/ 10.0 Hz, 1 H, 2-H), 4.12/4.13 (2 q, 2 \times J = 7.1 Hz, 2H, CH₂), 5.71 (dd, *J=* 6.4/10.0 Hz, lH, 3-H), 6.18 (dd, *J=* 0.W6.4 Hz, IH, *5-* H), 7.14-7.24 (m, lH, Ph), 7.25-7.28 (m, 4H, Ph); diastereomer 2: 6 = 1.04 **[s,** 9H, C(CH3),], 1.25 (t, *J=* 7.1 Hz, 3H, CH3), 2.94 (dd, $J = 1.2/9.6$ Hz, 1 H, 2-H), 4.15/4.16 (2 q, 2 \times $J = 7.1$ Hz, 2 H, CH₂), 5.72 (dd, $J = 6.4/9.6$ Hz, 1 H, 3-H), 6.17 (dd, $J = 1.2/6.4$ Hz, 1H, 5-H), 7.14-7.24 (m, 1H, Ph), 7.25-7.28 (m, 4H, Ph). $-$ ¹³C NMR: δ = 14.6/14.7 (2+, CH₃), 28.0/28.2 [2+, C(CH₃)₃], 34.2/34.7 $[2 \times, C(CH_3)_3]$, 56.9/57.4 (2+, C-2), 60.7 (-, CH₂), 91.9/92.1/95.3/ 95.4 (4+, C-3, C-5), 127.0/127.1/127.2/127.5/128.7/128.9 (6+, Ph), 134.5/134.7 (2X, Ph), 173.U173.3 (2X, C-l), 206.2/206.6 (2X, C-4). - MS: m/z (%) = 258 (4) [M⁺], 173 (100). - C₁₇H₂₂O₂ (258.4): calcd. C 79.03, H 8.58; found C 79.21, H 8.93.

6,6-Dimethyl-2-(l.l-dimethylethyl)-3,4-heptadiennitrile **(3c):** Prepared from 360 mg (4.0 mmol) of CuCN in *8* ml of THF, 2.4 ml (4.0 mmol) of tBuLi, and 220 mg (1.7 mmol) of **lc[l']** in 1 ml of THF as described for **3a.** Purification by column chromatography $[SiO₂; diethyl ether/hexane (1:20)]$ furnished 158 mg (48%) of 3c (78:22 mixture of diastereomers) as a slightly yellow oil. $-$ IR. \tilde{v} = 2235 cm⁻¹ (CN), 1965 (C=C=C). - ¹H NMR: Major diastereomer: $\delta = 1.01$ [s, 18 H, C(CH₃)₃], 2.93 (dd, $J = 2.6/6.8$ Hz, 1 H, 1H, 3-H); minor diastereomer: $\delta = 1.01$ [s, 18H, C(CH₃)₃], 2.91 5.30 (dd, $J = 2.0/6.2$ Hz, 1 H, 3-H). $-$ ¹³C NMR: Major diastereomer: $\delta = 26.2$ [+, C(CH₃)₃], 29.1 [+, C(CH₃)₃], 31.2 [×, C(CH₃)₃], 2-H), 5.08 (dd, $J = 6.2/6.8$ Hz, 1 H, 5-H), 5.30 (dd, $J = 2.6/6.2$ Hz, (dd, *J* = 2.017.5 Hz, 1 H, 2-H), 5.09 (dd, *J* = 6.2/7.5 **Hz,** 1 H, 5-H),

33.2 [\times , C(CH₃)₃], 45.0 (+, C-2), 86.7 (+, C-3), 105.2 (+, C-5), 119.3 (\times , C-1), 202.6 (\times , C-4); minor diastereomer: $\delta = 26.2$ [+, $C(CH₃)₃$], 29.1 [+, C(CH₃)₃], 31.1 [\times , C(CH₃)₃], 34.2 [\times , C(CH₃)₃], 44.7 (+, C-2), 86.7 (+, C-3), 105.3 (+, C-5), 119.4 (X, C-I), 202.7 $(X, C-4)$. - MS: m/z (%) = 191 (4) [M⁺], 57 (100). - C₁₅H₂₁N (191.3): calcd. C 81.62, H 11.06, N 7.32; found C 81.12, H 11.08, N 7.15.

- **[I] [la]** I. Crossland, Actu Chem. Scand., Ser. B **1975, B29,** 468-470. **["I** T. Holm, **I.** Crossland, J. 0. Madsen, *Actu* Chem. Scand., *Ser.* **B 1978, B32,** 754-758.
- **[2]** [2a] G. **W.** Klumpp, A. J. C. Mierop, J. J. Vrielink, A. Bru man M. Schakel, *J* Am. Chem. Soc. **1985,107,** 6740-6742. **f2b]** K: J. H. Kruithof, A. Materboer, M. Schakel, G. **W.** Klumpp, Red. Trav. Chim. Pays-Bas **1986,** *105,* 62-65.
- Review: B. H. Lipshutz, **S.** Sengupta, *Org.* React. **1992, 41,** 135-631.
- ^[4] In order to represent the geometry of allenes correctly, steric formulae of type 2/3 are used throughout this paper; here, one enantiomer is shown arbitrarily, although all reactions se-
- quences were conducted with racemic materials.

^[5] ^[5a] N. Krause, *Chem. Ber.* **1990**, *123*, 2173-2180. ^[5b] S. Arndt, G. Handke, N. Krause, *Chem. Ber.* **1993**, *126*, 251–259.
- ^[Sc] N. Krause, S. Arndt, *Chem. Ber.* **1993**, *126*, 261–263. -**[5d1** N. Krause, *Liebigs Ann.* Chem. **1993,** 521-525. - **rSe]** G. Handke, N. Krause, Tetrahedron *Lett.* **1993, 34,** 6037-6040.
- **E6]** N. Krause, Chem. **Bey. 1991, 124,** 2633-2635.
- **L71** N. Krause, **G.** Handke, Tetrahedron Lett. **1991,32,** 7229-7232.
- **Is] Lsa]** N. Krause, *J Org.* Chem. **1992, 57,** 3509-3512. **[8h]** N. Krause, R. Wagner, **A.** Gerold, *J Am.* Chem. Soc. **1994, 116,** $381 - 382$.
- **['I** M. Spescha, G. Rihs, Helv. *Chim.* Acta **1993, 76,** 1219-1230.
- [I0] R. A. J. Smith, D. J. Hannah, Tetrahedron **1979,35,** 1183- 1 189, and literature cited therein.
- **[I1]** T. R. Boronoeva, N. N. Belyaev, M. D. Stadnichuk, **A. A.** Petrov, *Zh. Obshch.* Khim. **1974, 44,** 1949-1958; *J* Gen. Chem. USSR (Engl. Transl.) **1974, 44,** 1914-1921; Chem. *Absrv.* **1975, 82,** 43506e.
- [12] Enones and enoates undergo conjugate addition reactions with organocopper reagents in the presence of iodotrimethylsilane: M. Bergdahl, E.-L. Lindstedt, M. Nilsson, T. Olsson, Tetrahedron **1989, 45,** 535-543. Under these conditions, 2-en-4 ynoates give the 1,4-addition products: G. Handke, Ph. D. Thesis, TH Darmstadt, **1993.**

[130/94]